Milestone Review Flysheet

Institution Piedmont Virginia Community College

Milestone	PDR
-----------	-----

Vehicle Properties		
Total Length (in)	98	
Diameter (in)	5.5	
Gross Lift Off Weigh (lb)	27.51	
Airframe Material	Fiberglass	
Fin Material	Fiberglass	
Coupler Length	12 in	

Stability Analysis		
Center of Pressure (in from nose)	72.54	
Center of Gravity (in from nose)	54.39	
Static Stability Margin	3.3	
Static Stability Margin (off launch rail)	3.8	
Thrust-to-Weight Ratio	16.25	
Rail Size and Length (in)	1515 X 144	
Rail Exit Velocity	90 ft/s	

Recovery System Properties					
	Drogue Parachute				
Manufactu	ırer/Model	Madcow	Rocketry/Nylon	chute 30"	
Si	ze		30 in		
Altitu	de at Deployme	ent (ft)	nt (ft) 5284		
Veloci	ty at Deploymer	nt (ft/s)	13.5		
Ter	minal Velocity (1	ft/s)	62		
Reco	very Harness Ma	aterial	Kevlar		
Harness Size/Thicknes		ss (in)	1		
Recovery Harness Leng		gth (ft)	25		
Harness/Airframe Interfaces			ts on each end of the recovery nat attach to it independently.		
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft-Ibs)	680	588	444	N/A	

Recovery Electronics		
Altimeter(s)/Timer(s)	Missile Works/RRC3 "Sport"	
(Make/Model)	Altimeter	
Redundancy Plan	Use two altimeters with separate batteries. Use separate ejection charges for each altimeter.	
Pad Stay Time (Launch Configuration)	45.1	
Comiguration	15+ hours	

Motor Properties		
Motor Designation	Kosdon by AeroTech L1400F	
Max/Average Thrust (lb)	447/314	
Total Impulse (lbf-s)	593	
Mass Before/After Burn	5.5/2.75	
Liftoff Thrust (lb)	447	
Motor Retention	Screw-on Retainer	

Ascent Analysis		
Maximum Velocity (ft/s)	650	
Maximum Mach Number	0.55	
Maximum Acceleration (ft/s^2)	517	
Target Apogee (From Simulations)	5284 ft	
Stable Velocity (ft/s)	43	
Distance to Stable Velocity (ft)	2.9	·

Recovery System Properties					
	Main Parachute				
Manufactu	ırer/Model	Fruity Chut	tes/84" Iris Ultra	Parachute	
Si	ze		84 in		
Altitu	de at Deployme	nt (ft)	50	00	
Veloci	ty at Deploymer	nt (ft/s)	6	2	
Ter	minal Velocity (1	ft/s)	17		
Recovery Harness Materia		aterial	Kevlar		
Harness Size/Thickness (i		ss (in)	1		
Recovery Harness Leng		gth (ft)	th (ft) 25		
Harness/Airframe Interfaces Two U-bolts on each end of the recovery harness that attach to it independently.			,		
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft-lbs)	48	23	32	N/A	

Recovery Electronics		
Rocket Locators (Make/Model)	Adafruit/Adafruit Ultimate GPS Breakout	
Transmitting Frequencies	900 MHz	
Black Powder Mass Drogue Chute (grams)	1.3	
Black Powder Mass Main Chute (grams)	1.8	

Milestone Review Flysheet

Institution	Piedmont Virginia Community College	Mil	lestone	PDR

	Autonomous Ground Support Equipment (MAV Teams Only)
	Overview
Capture Mechanism	
	Overview
Container Mechanism	
	Overview
Launch Rail Mechanism	***Include Description of rail locking mechanism***
	Overview
Igniter Installation Mechanism	

	Payload
	Overview
Payload 1	Roll induction and counter roll. After motor burnout, the rocket will roll twice about its long axis. While rolling, it will use a camera to detect the ground targets from the target identification challenge. After it has completed two rolls, it will roll to aim a camera at one or more of the ground targets. After that, the rocket will return to whatever roll it had after motor burnout.
	Overview
Payload 2	

Test Plans, Status, and Results						
Ejection Charge Tests	The ejection charge test will occur around February 13th, when the full-scale rocket is complete enough to test. The sub-scale ejection charge test will take place around November 26th, when it is completed enough to test.					
Sub-scale Test Flights	The sub-scale test flight will take place around December 10th, depending on when the NAR sections that the team is working with have launches. The sub-scale construction will take place from November 14th through November 26th. The sub-scale design will happen from November 4th through November 12th.					
Full-scale Test Flights	The full-scale test flight will occur in mid to late February, depending on when the NAR sections that the team is working with have launches; neither of them have posted schedules that far in advance. The full-scale construction will take place from February 1st through February 16th. The full-scale design will continue until December 16th.					

Milestone Review Flysheet

Institution	Piedmont Virginia Community College		Milestone	PDR		
Additional Comments						